Utilizzo del PVC nella produzione di componenti meccanici su misura

La nostra torneria meccanica di precisione, specializzata nella produzione su ordinazione di componenti meccanici, è leader nel settore grazie alla nostra vasta esperienza e agli investimenti tecnologici annuali. Ogni pezzo è certificato per la qualità, rispettando rigorosamente i termini di consegna e offrendo soluzioni personalizzate per soddisfare le esigenze dei clienti, posizionandoci come punto di riferimento qualificato nel mercato italiano ed estero.

Offriamo una gamma completa di servizi, inclusi trattamenti galvanici, termici e rettifiche, grazie alla collaborazione con fornitori certificati esperti nel settore. La nostra dedizione alla precisione e alla qualità ci ha permesso di distinguerci e diventare un partner affidabile per chi cerca componenti meccanici su misura.

La profonda conoscenza dei materiali ci guida nella selezione del PVC, un materiale che ha guadagnato merito nel panorama della meccanica di precisione. Negli ultimi anni, oltre all’acciaio inox, si è riconosciuto il valore di materiali plastici come il PVC. La lavorazione di queste materie plastiche avviene tramite fresatrici e torni, con attenzione alle qualità meccaniche e chimiche distintive.

Lavorazione di semilavorati plastici per automazione e meccanica

Le materie plastiche rivestono un ruolo cruciale nella produzione di pezzi meccanici, offrendo risorse uniche. Nel contesto della meccanica di precisione, la scelta accurata dei materiali è fondamentale. Esploriamo le ragioni e i vantaggi dell’utilizzo del PVC in questo ambito.

Il Cloruro di Polivinile (PVC) si distingue per la sua resistenza meccanica superiore rispetto ad altri polimeri plastici come il PP e il PE. La sua elevata inerzia chimica, discreta durezza, capacità di isolamento elettrico e stabilità dimensionale lo rendono un alleato prezioso nel settore industriale.

Il PVC trova applicazioni nelle lavorazioni di fresatura e tornitura CNC per la produzione di pezzi meccanici di precisione. Particolarmente adatto alla realizzazione di dispositivi medici e filtri per l’industria chimica, il PVC si afferma come una scelta versatile e affidabile.

Concludendo, la nostra torneria meccanica di precisione si impegna a offrire soluzioni su misura, sfruttando al meglio le caratteristiche uniche del PVC per soddisfare le esigenze specifiche dei nostri clienti. Siamo orgogliosi di essere un punto di riferimento qualificato nel fornire componenti meccanici di alta qualità, sostenendo il successo delle aziende che scelgono la nostra esperienza.

Lavorazioni meccaniche di precisione in acciaio inox

Se stai cercando materiali di grande importanza per le lavorazioni meccaniche di precisione, gli acciai inossidabili sono una scelta eccellente. La loro eccezionale resistenza alla corrosione li rende particolarmente adatti alla produzione di componenti meccanici ad alta affidabilità, ideali per applicazioni con agenti aggressivi come acidi, basi e sali. In questo articolo, esploreremo approfonditamente i diversi tipi di acciaio inossidabile utilizzati nelle lavorazioni meccaniche di precisione e i processi di produzione più diffusi.

Tipi principali di Acciai inox

Gli acciai inossidabili sono leghe metalliche composte principalmente da ferro, cromo e altri elementi come nickel e molibdeno. Nelle lavorazioni meccaniche di precisione, i principali tipi di acciai inossidabili includono:

  • 1.4301 | AISI 304: Comunemente utilizzato per la produzione di parti meccaniche ad alta affidabilità, come tubi, valvole e componenti per impianti chimici e alimentari.
  • 1.4305 | AISI 303: Noto per la sua lavorabilità e resistenza alla corrosione, spesso impiegato nella produzione di parti meccaniche di elevata precisione, come ingranaggi.
  • 1.4401 | AISI 316: Di alta qualità, adatto per parti meccaniche che devono resistere a condizioni critiche come condizioni saline e alte temperature. Comunemente usato nell’industria marittima e chimica.
  • 1.4028 | AISI 420B: Conosciuto per la sua durezza e resistenza all’usura, ideale per la produzione di lame, coltelli e altri strumenti da taglio.
  • 1.4057 | AISI 431: Di alta qualità, adatto per componenti meccanici difficili da lavorare, ma che richiedono elevata resistenza alla corrosione e alla fatica.

La produzione degli acciai inossidabili coinvolge diversi processi, tra cui forgiatura, fusione, colata, estrazione, laminazione ed estrusione. La scelta del processo dipende dalle esigenze e dalle prestazioni richieste per le parti meccaniche da produrre. La forgiatura, la fusione e altri processi presentano vantaggi e svantaggi, influenzando costi, tempi di produzione e qualità del prodotto.

Scelta degli acciai inossidabili per lavorazioni di precisione

La scelta del tipo di acciaio inossidabile più adeguato dipende dalle prestazioni richieste dalle parti meccaniche da produrre e dai processi di produzione più adatti per ottenere i migliori risultati. La resistenza alla corrosione e la lavorabilità dei materiali sono fattori chiave nella decisione. L’adozione dei giusti processi di produzione garantisce una realizzazione perfetta, garantendo alta qualità, durabilità e resistenza nell’uso quotidiano.

Siamo una torneria meccanica di precisione con una vasta esperienza e investimenti tecnologici costanti, posizionandoci all’avanguardia del settore. La nostra qualità certificata, il rispetto dei termini di consegna e la capacità di offrire soluzioni personalizzate ci rendono un punto di riferimento qualificato per il mercato italiano ed estero. Forniamo prodotti che richiedono trattamenti galvanici, trattamenti termici e rettifiche, collaborando con fornitori certificati e competenti.

Per ulteriori dettagli sui nostri servizi e l’utilizzo degli acciai inossidabili nelle lavorazioni di precisione, continua a leggere i nostri approfondimenti sugli acciai inossidabili e le loro applicazioni.

L’uso dell’alluminio nella meccanica di precisione

L’alluminio rappresenta uno dei materiali più impiegati nella produzione di componenti meccanici di elevata qualità nel campo della meccanica di precisione. Ma come avviene la selezione delle leghe di alluminio?

Nel contesto della meccanica di precisione, la scelta dei materiali si basa sull’adeguatezza alla realizzazione delle specifiche del disegno tecnico e dell’uso previsto. Parlando di meccanica di precisione, sarebbe limitativo pensare esclusivamente all’acciaio (comune e speciale), poiché esistono materiali più performanti in determinati contesti. Tra i materiali maggiormente impiegati nella fabbricazione di pezzi meccanici di precisione rientra l’alluminio, o più precisamente, le leghe di alluminio.

Caratteristiche dell’alluminio e delle sue leghe

L’alluminio è un metallo leggero (2,70 kg/dm3) e, al contempo, resistente, ottenendo la sua colorazione tipica grazie al comportamento della superficie a contatto con l’aria, che previene l’ossidazione e la corrosione. Questo materiale si dimostra particolarmente malleabile, saldabile e presenta un’elevata conducibilità elettrica e termica.

Rispetto all’acciaio, l’alluminio ha una tensione di snervamento inferiore (il punto in cui subisce deformazioni irreversibili), ma grazie alla sua minore densità, riesce a raggiungere livelli elevati di robustezza senza incrementare il peso. La sua capacità di legarsi ad altri elementi consente di modificarne la composizione, generando leghe di alluminio con proprietà diverse.

Classificazione delle leghe di alluminio

Le leghe leggere sono suddivise in serie in base alla composizione di alluminio e di un altro componente. Ecco le principali:

  • Serie 1000: Composta principalmente da alluminio puro (99%), offre elevata conducibilità, resistenza alla corrosione e lavorabilità.
  • Serie 2000: Conosciuta anche come Duralluminio o Avional, è leggera e resistente, con possibilità di trattamenti termici per incrementare la resistenza meccanica. Ottenuta unendo alluminio e rame.
  • Serie 3000: La combinazione di alluminio e manganese produce una serie con elevata resistenza meccanica, ma limitata duttilità.
  • Serie 4000: Contiene alluminio e silicio, dimostrando particolare resistenza all’usura.
  • Serie 5000: L’alluminio e il magnesio generano la serie Peraluman, caratterizzata da duttilità, saldabilità, resistenza alla fusione e alla corrosione.
  • Serie 6000: La combinazione di alluminio, silicio e magnesio forma la serie Anticorodal, con lavorabilità, saldabilità, resistenza meccanica e resistenza alla corrosione.
  • Serie 7000: Comunemente nota come Ergal, nasce dalla combinazione di alluminio, zinco e magnesio, mostrandosi leggera, lavorabile e resistente al carico e alla corrosione, sebbene con limitata saldabilità.

La lega di alluminio più resistente è l’Ergal, ma ciò non implica che sia la scelta ottimale per tutti i settori industriali. La meccanica di precisione seleziona le leghe di alluminio in base alle loro caratteristiche meccaniche e all’applicazione specifica. Ad esempio, le leghe a base di alluminio puro al 99% sono preferite per la realizzazione di scambiatori di calore e impianti chimici, mentre il settore aerospaziale sfrutta le leghe di alluminio Avional per il loro rapporto peso/resistenza. Ogni serie di leghe trova la sua applicazione ideale, come nel caso delle leghe della serie 6000 utilizzate nei settori ciclistico, motociclistico e ferroviario. Analogamente, l’Ergal può essere impiegato sia nel campo aerospaziale che aeronautico.

Come la tecnologia CAD/CAM impatta nel campo della meccanica di precisione

La meccanica di precisione richiede l’uso di tecnologie all’avanguardia per realizzare componenti di qualità. Tra queste, la tecnologia CAD/CAM svolge un ruolo apicale. Acronimo di “Computer-Aided Design/Computer-Aided Manufacturing”, la tecnologia CAD/CAM prevede l’utilizzo di un sistema di software per progettare e fabbricare componenti personalizzati e con estrema precisione, aumentando le prestazioni qualitative delle lavorazioni meccaniche in settori particolarmente specifici, quali quello oleodinamico o termoidraulico.

I software CAD/CAM forniscono ai macchinari impiegati nelle lavorazioni meccaniche le indicazioni essenziali per realizzare un determinato componente meccanico  Grazie alla gestione ottimale dei software, è possibile ottenere il massimo della qualità e ottimizzare le tempistiche di produzione.

È importante sottolineare che l’acquisizione di dati di una scansione o di un modello mediante il software CAD consente l’invio delle indicazioni al computer CAM, che a sua volta traduce queste indicazioni in istruzioni per i macchinari CNC. Considerata la specificità del settore, è necessario avere un’esperienza decennale alle spalle per poter raggiungere risultati eccellenti in termini di precisione e qualità.

Un’azienda come T.M.G., grazie anche agli investimenti tecnologici che annualmente vengono apportati, è all’avanguardia nel settore della meccanica di precisione; la qualità certificata di ogni singolo pezzo ed il rispetto dei termini di consegna, con scrupolosa attenzione alle numerose soluzioni personalizzate per il cliente, la rende un punto di riferimento altamente qualificato per il mercato italiano ed estero, potendo fornire prodotti che richiedono trattamenti galvanici, trattamenti termici e rettifiche con l’ausilio di fornitori certificati e dotati di competenze uniche in questo campo, ottimizzando le tempistiche di produzione e aumentando le prestazioni qualitative delle lavorazioni meccaniche.

Come la tornitura meccanica di precisione può garantire una precisione straordinaria

Questo processo di tornitura meccanica di precisione è decisamente fondamentale nella produzione di pezzi di forma complessa. Consiste nell’uso di macchinari altamente specializzati in grado di eseguire tagli precisi e regolari sul materiale per ottenere superfici perfette.

Durante la tornitura meccanica di precisione, l’utensile viene fissato al tornio e il materiale ruota sulla sua asse. L’utensile, a sua volta, esegue un movimento curvilineo o rettilineo, a seconda dell’effetto desiderato. Questa interazione precisa tra l’utensile e il materiale consente di rimuovere in modo efficiente il materiale in eccesso, generando trucioli che vengono successivamente scartati.

La lavorazione con macchinari a controllo numerico (CNC) ha rivoluzionato il settore della tornitura meccanica di precisione. I macchinari CNC utilizzano un software sofisticato per pilotare l’intero processo, garantendo una precisione straordinaria e una riproducibilità senza precedenti. Ciò è particolarmente vantaggioso quando si lavorano grandi quantità di parti meccaniche complesse.

L’importanza dei macchinari di alta qualità nel processo di tornitura di precisione non può essere sottolineata abbastanza. La precisione è essenziale per garantire che i pezzi prodotti rispettino i rigorosi standard qualitativi richiesti dal settore. Gli investimenti in macchinari avanzati consentono alle aziende di migliorare l’efficienza e la produttività, nonché di soddisfare le esigenze dei clienti in termini di qualità e tempi di consegna.

In definitiva, la tornitura meccanica di precisione rappresenta un processo fondamentale per la produzione di pezzi complessi e di alta qualità. Grazie all’utilizzo di macchinari sofisticati e all’impiego di tecnologie avanzate, le aziende possono garantire risultati eccezionali e a lungo termine soddisfare le esigenze dei loro clienti.

Le caratteristiche meccaniche dell’alluminio e delle sue leghe

Le leghe di alluminio sono uno dei materiali più utilizzati nella meccanica di precisione per la produzione di componenti meccanici di alta qualità. In questo articolo, esploreremo come vengono scelte le leghe di alluminio e le loro caratteristiche meccaniche. Quando si tratta di selezionare i materiali per la meccanica di precisione, non si può ridurre la scelta solo all’acciaio. Ci sono materiali più performanti in determinati contesti, come l’alluminio o, più precisamente, le leghe di alluminio.

Caratteristiche dell’alluminio e sua utilità nella meccanica di precisione

L’alluminio è un metallo leggero e resistente, con una densità di 2,70 kg/dm3. Ha una colorazione tipica dovuta alla sua ossidazione che previene la corrosione. È un materiale malleabile, saldabile e con un’elevata conducibilità elettrica e termica. Rispetto all’acciaio, l’alluminio ha una tensione di snervamento inferiore, ma grazie alla sua minore densità, può raggiungere livelli di robustezza elevati senza aggiungere peso. La sua capacità di legarsi ad altri elementi consente di ottenere leghe di alluminio con caratteristiche diverse.

Le principali leghe di alluminio

Le leghe di alluminio, o leghe leggere, sono il risultato della combinazione tra l’alluminio e un altro materiale come rame, manganese, silicio, zinco e magnesio. Ogni lega ha caratteristiche specifiche, ma ci sono anche alcuni vantaggi comuni a tutte le leghe di alluminio, come bassa densità, elevata duttilità, eccellente conduzione elettrica e termica, basso punto di fusione e resistenza alla corrosione migliorabile tramite trattamenti termici.

Le leghe di alluminio vengono suddivise in diverse serie in base alla loro composizione. La serie 1000 è composta principalmente da alluminio puro e offre buona conducibilità, resistenza alla corrosione e lavorabilità. La serie 2000, conosciuta anche come Duralluminio o Avional, è leggera e dura e può essere trattata termicamente per aumentare la resistenza meccanica. La serie 3000 ha una composizione di alluminio e manganese, offrendo elevata resistenza meccanica ma scarsa duttilità. Le leghe della serie 4000 contengono alluminio e silicio, conferendo loro resistenza all’usura. La serie 5000, chiamata Peraluman, combina alluminio e magnesio e offre duttilità, saldabilità e resistenza alla fusione e alla corrosione. La serie 6000, chiamata Anticorodal, combina alluminio, silicio e magnesio e offre lavorabilità, saldabilità, resistenza meccanica e resistenza alla corrosione. Infine, la serie 7000, nota come Ergal, combina alluminio, zinco e magnesio ed è leggera, lavorabile e resistente al carico e alla corrosione, sebbene abbia scarsa saldabilità.

La scelta della lega di alluminio dipende dalle caratteristiche meccaniche richieste e dall’applicazione specifica. Ad esempio, le leghe composte da alluminio puro al 99% sono ideali per scambiatori di calore e impianti chimici. Nella produzione di componenti di precisione per l’industria aeronautica e aerospaziale, si preferiscono le leghe di alluminio Avional grazie al loro rapporto peso/resistenza. Le leghe della serie 3000 sono comunemente utilizzate nell’industria alimentare, mentre la serie Peraluman trova applicazione nel settore automotive e navale. Le leghe della serie 6000 sono utilizzate per componenti nel settore ciclistico, motociclistico e ferroviario. L’Ergal, sebbene abbia scarsa saldabilità, può essere utilizzato anche in campo aerospaziale e aeronautico.

In conclusione, la scelta delle leghe di alluminio è influenzata dalle loro caratteristiche meccaniche e dal campo di applicazione specifico. Per ottenere componenti meccanici di qualità nella meccanica di precisione, è fondamentale considerare attentamente le caratteristiche e le proprietà delle diverse leghe di alluminio disponibili.

Componenti meccanici ed oleodinamici: un approfondimento

La meccanica di precisione è essenziale per la produzione di componenti meccanici di alta qualità per diversi settori industriali, compresa l’oleodinamica. In questo articolo, discuteremo dei componenti oleodinamici e della loro importanza all’interno di questo settore.

Cos’è l’oleodinamica?

L’oleodinamica è un settore dell’ingegneria che si occupa dell’ideazione e della realizzazione di impianti che sfruttano la forza di un fluido spinto in un contenitore. Questi impianti sono fondamentali per il funzionamento di macchinari e sistemi in vari settori industriali, come l’industria automobilistica, alimentare e medicale.

I componenti oleodinamici sono fondamentali per il corretto funzionamento degli impianti oleodinamici. Le valvole oleodinamiche sono solo uno dei numerosi componenti che contribuiscono ad assicurare il corretto e sicuro funzionamento di un sistema oleodinamico.

I componenti oleodinamici essenziali

La produzione di componenti oleodinamici comprende una vasta gamma di pezzi, tra cui le valvole oleodinamiche, i tubi, i cilindri oleodinamici, i filtri oleodinamici, i giunti e molti altri pezzi di collegamento tra le varie parti di un impianto.

Ogni componente svolge un ruolo cruciale nell’accuratezza del movimento e nel corretto funzionamento a lungo termine di un impianto oleodinamico. Considerando il calore generato dal fluido, il suo movimento all’interno del percorso e l’energia termica prodotta per attivare l’impianto, è essenziale che i componenti oleodinamici siano in grado di resistere a diverse sollecitazioni.

L’importanza della meccanica di precisione

È fondamentale affidarsi a specialisti con competenze, esperienza e macchinari all’avanguardia per ottenere componenti oleodinamici di alta qualità e resistenza. Lo studio personalizzato, la conoscenza dei materiali e l’utilizzo di macchinari all’avanguardia permettono di personalizzare ogni aspetto dei componenti oleodinamici, garantendo risultati eccellenti.

In conclusione, i componenti meccanici ed oleodinamici sono fondamentali per garantire il corretto funzionamento degli impianti oleodinamici. La produzione di componenti personalizzati di alta qualità e resistenza richiede competenze specializzate e l’utilizzo di macchinari all’avanguardia.

L’uso di software CAD/CAM nella meccanica di precisione

La meccanica di precisione richiede l’utilizzo di tecnologie all’avanguardia per realizzare componenti di qualità. Tra queste tecnologie, la tecnologia CAD/CAM svolge un ruolo fondamentale. In questo articolo esploreremo il legame tra la tecnologia CAD/CAM e le lavorazioni meccaniche di precisione, spiegando il suo funzionamento e il suo impatto sulla qualità dei componenti.

Il ruolo della tecnologia CAD/CAM nella meccanica di precisione

La tecnologia CAD/CAM, acronimo di “Computer-Aided Design/Computer-Aided Manufacturing”, è un sistema di software che consente di progettare e fabbricare componenti assistiti da computer. I software CAD consentono la progettazione dei componenti in un ambiente digitale, mentre i software CAM forniscono le istruzioni di produzione ai macchinari utilizzati per le lavorazioni meccaniche.

In ambito meccanico, la tecnologia CAD/CAM consente di produrre componenti personalizzati e di elevata precisione, aumentando le prestazioni qualitative delle lavorazioni meccaniche in settori esigenti e particolari. Il sistema CAD/CAM fornisce le indicazioni essenziali alla realizzazione di un determinato pezzo meccanico ai macchinari impiegati nelle lavorazioni meccaniche. Grazie alla gestione ottimale dei software, è possibile ottenere il massimo della qualità e ottimizzare le tempistiche di produzione.

È importante sottolineare che l’acquisizione di dati di una scansione o di un modello mediante il software CAD consente l’invio delle indicazioni al computer CAM, che a sua volta traduce queste indicazioni in istruzioni per i macchinari. La produzione dei componenti è quindi assistita dai software. Tuttavia, la conoscenza del settore e la dimestichezza del sistema CAD/CAM sono fondamentali per inserire i parametri giusti e sfruttare le macchine al massimo del loro potenziale.

In altre parole, la tecnologia CAD/CAM non riuscirebbe a realizzare risultati eccellenti in termini di precisione e qualità senza un’esperienza settoriale alle spalle. È possibile, attraverso queste soluzioni, progettare e fabbricare componenti personalizzati e di elevata precisione, ottimizzando le tempistiche di produzione e aumentando le prestazioni qualitative delle lavorazioni meccaniche.

Meccanica di precisione: caratteristiche dei metalli più utilizzati

La meccanica di precisione si occupa della lavorazione di metalli e leghe metalliche con l’obiettivo di trasformare il materiale di partenza in un prodotto finito. La scelta dei materiali per una data applicazione richiede un’attenta valutazione della capacità degli stessi di essere tagliati, intagliati e finiti nella maniera più opportuna. Inoltre, è una buona pratica scegliere il materiale migliore prima di trasformarlo nel prodotto finale desiderato.

Quando si valuta la lavorabilità di un materiale, è necessario considerare anche fattori come la durezza, la conduttività termica ed elettrica e la malleabilità, prima di andare a realizzare raccordi, scambiatori, valvole o pompe. Tra i metalli, ognuno possiede vantaggi specifici in relazione al prodotto che si deve ottenere.

Fra i metalli più comunemente utilizzati per la lavorazione vi sono:

  • Alluminio
  • Rame
  • Ottone
  • Acciaio inossidabile

Vediamo insieme quali sono le caratteristiche che rendono peculiari i metalli lavorati nella meccanica di precisione.

I metalli più utilizzati nella meccanica di precisione

 

 

L’alluminio è un materiale estremamente resistente e risponde in maniera ottimale alle operazioni di taglio, foratura, punzonatura e fresatura. La sua lavorazione comporta uno sforzo minore rispetto a quello richiesto da altri metalli. Grazie al suo alto grado di lavorabilità, viene utilizzato in lavorazioni per la produzione di steli di tubi, parti di macchine o filtri.

L’ottone è una lega composta da zinco e rame ed è nota per il suo aspetto dorato e la buona lavorabilità. È caratterizzato da un basso punto di fusione, un’eccellente malleabilità e una straordinaria resistenza alla corrosione e all’ossidazione. L’ottone viene utilizzato per la realizzazione di valvole, cuscinetti o dispositivi elettrici, oltre a diversi elementi di meccanica di precisione per il settore navale.

Il rame è un metallo naturale caratterizzato da eccellenti proprietà conduttive. Nella meccanica di precisione viene usato per costruire prodotti come radiatori, generatori, connettori e scambiatori di calore, in virtù del fatto che riesce a condurre il calore in maniera ottimale, resistendo alla ruggine e garantendo la migliore conducibilità elettrica fra tutti i metalli lavorabili.

L’acciaio inossidabile, infine, è un metallo ideale in numerose applicazioni come la realizzazione di dispositivi medici, attrezzature industriali o componenti nel settore aerospace o automotive. Questo perché ha una resistenza maggiore alla ruggine ed alla corrosione rispetto ad altre tipologie di acciaio grazie allo strato protettivo di ossido inerte generato da uno specifico processo chimico. È composto da una lega formata da ferro e cromo, la quale si lega a particelle di ossigeno formando ossido di cromo solido sulla superficie dell’acciaio. Questo significa però che l’acciaio inossidabile ha una capacità limitata di resistere a graffi e abrasioni.

Lavorazioni meccaniche di precisione dei materiali plastici: dalla robotica all’aerospaziale

La lavorazione meccanica di precisione dei materiali plastici è un’area in continua evoluzione che sta diventando sempre più importante nel campo della produzione di componenti meccanici di alta precisione. I materiali plastici come Delrin, Ertacetal, POM C, PVC, Nylon, Teflon e Polietilene sono utilizzati in molti settori industriali per la produzione di componenti meccanici di alta precisione, come ad esempio la robotica, l’aerospaziale, l’automotive e l’elettronica. Versatili, economici e leggeri, questi materiali possono essere lavorati con una vasta gamma di tecnologie, tra cui la fresatura, la tornitura, l’estrusione, la stampaggio a iniezione e la stampaggio ad iniezione ad alta pressione. Queste tecnologie consentono di produrre componenti meccanici di alta precisione con grande accuratezza dimensionale e finiture superficiali di alta qualità.

Uno dei vantaggi dei materiali plastici è la loro capacità di resistere a condizioni estreme di temperatura, umidità e corrosione. Ad esempio, il Delrin è un materiale termoplastico resistente all’abrasione e all’usura, mentre il Teflon è resistente alla corrosione chimica e alle alte temperature. Queste caratteristiche li rendono particolarmente adatti per l’utilizzo in ambienti difficili e per applicazioni che richiedono un’alta resistenza alla corrosione. Inoltre, i materiali plastici hanno un’alta resistenza meccanica, che li rende adatti per la produzione di componenti meccanici di alta precisione che vengono sottoposti a carichi elevati. Ad esempio, il POM C è un materiale termoplastico con un’alta resistenza alla flessione, mentre il nylon è un materiale termoplastico con un’alta resistenza all’impatto.

Perché usare materiali plastici per produrre componenti meccanici di alta precisione

In generale, le lavorazioni meccaniche di precisione dei materiali plastici consentono di produrre componenti meccanici di alta precisione con caratteristiche meccaniche eccellenti, resistenza all’usura, alle alte temperature e alla corrosione, e un peso ridotto. Ciò li rende particolarmente adatti per l’utilizzo in molti settori industriali, come la robotica, l’aerospaziale, l’automotive e l’elettronica. In conclusione, le lavorazioni meccaniche di precisione dei materiali plastici sono un’area in continua evoluzione che sta diventando sempre più importante per la produzione di componenti meccanici di alta precisione